Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract)

نویسنده

  • Peter Selinger
چکیده

We show that an equation follows from the axioms of dagger compact closed categories if and only if it holds in finite dimensional Hilbert spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite dimensional Hilbert spaces are complete for dagger compact closed categories

We show that an equation follows from the axioms of dagger compact closed categories if and only if it holds in finite dimensional Hilbert spaces.

متن کامل

Categories of Quantum and Classical Channels (extended abstract)

We introduce the CP*–construction on a dagger compact closed category as a generalisation of Selinger’s CPM–construction. While the latter takes a dagger compact closed category and forms its category of “abstract matrix algebras” and completely positive maps, the CP*–construction forms its category of “abstract C*-algebras” and completely positive maps. This analogy is justified by the case of...

متن کامل

Idempotents in Dagger Categories: (Extended Abstract)

Dagger compact closed categories were studied by Abramsky and Coecke (under the name “strongly compact closed categories”) as an abstract presentation of the category of Hilbert spaces and linear maps, and as a framework in which to carry out the interpretation of quantum protocols. I subsequently showed that dagger compact closed categories can also describe mixed quantum computation, where th...

متن کامل

Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract)

Dagger compact closed categories were recently introduced by Abramsky and Coecke, under the name “strongly compact closed categories”, as an axiomatic framework for quantum mechanics. We present a graphical language for dagger compact closed categories, and sketch a proof of its completeness for equational reasoning. We give a general construction, the CPM construction, which associates to each...

متن کامل

Quantum Turing automata

A denotational semantics of quantum Turing machines having a quantum control is defined in the dagger compact closed category of finite dimensional Hilbert spaces. Using the Moore-Penrose generalized inverse, a new additive trace is introduced on the restriction of this category to isometries, which trace is carried over to directed quantum Turing machines as monoidal automata. The JoyalStreet-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 270  شماره 

صفحات  -

تاریخ انتشار 2011